Calculus I Name:
E1 Term, Sections E101 and E196

Instructor: E.M. Kiley WPI Username:
June 2, 2014

Week 2: Solutions to Written Homework Problems

Problem 1. Recall the “epsilon-delta” definition of the limit:

Suppose that f(x) is defined in an open interval containing the point a (except possibly not at a itself).
Then we say that the number L is the limit of f(z) as x approaches a—and we write

lim f(z) =L

Tr—a
—rprovided that the following criterion is satisfied: Given any number ¢ > 0, there exists a corresponding

number § > 0 such that
it 0 <|xr—al <96, then |f(x) — L| <e.

(a) Use this definition to prove that lir% 3z 4+ 7 =16.
r—

Solution. Let ¢ > 0 be given, and suppose that § < £. Then the following chain of logical statements
holds:

0<le—3/<d = |o—3 <z
= 3z —3|<e¢
= [3z—-9|<¢
= |Bz+7)—-16|<¢
— |f(z) —16] <.

Notice, in particular, that 0 < |z — 3| < ¢ implies that |f(x) — 16] < £, and this is just what we needed.

This is an extremely important exercise to see how to play the “epsilon-delta game”; that is, someone
has given you an € > 0, and it is your job to come up with some ¢ > 0 (usually dependent upon &) that
makes the implication 0 < |z —a| < § = |f(z) — L| < € always true. These proofs always take the
following form:

e Let £ > 0 be given (note that you are not assuming a particular value of ¢ here, and this is why the
proof works: because you're conducting the proof for a general, unspecified, arbitrary ¢, the result
is that no matter which numerical value of € > 0 someone were to actually throw at you, you could
come back with a § that would make the rest of the proof work);

e Suppose that § =[some expression] or that § <[some expression] (recall from the notes that as soon
as you find one § that works, then any other value 4’ such that 0 < ¢’ < § will also work: this is
why it doesn’t matter whether you say § = or § <[some expression]);

e Prove that with this choice of 4, the “key implication”
O<|z—al|<d = |f(z)—Ll<e
is true.

For some functions—Ilike this one—this process is not very difficult; for others, these “epsilon-delta”
proofs are more difficult, which is why it is convenient to have a set of rules for evaluating limits.




(b) How would you negate the epsilon-delta definition of the limit? That is, how would you go about proving
that, for some given f, a, and L, lim f(z)#£L, using epsilons and deltas?
Tr—ra

Solution. To prove that lim f(x)#L, it is necessary to find some € > 0 such that for all 6 > 0, there
Tr—a
exists some x such that both 0 < |z —a| < ¢, and |f(x) — L| > .

To see why this is sufficient to prove that lim f(x)#L, it is important to have fully understood how the
r—a

proof “game” in part (a) worked; that is, you showed that whichever € > 0 your opponent threw at you,
you were able to come back with some § that would make the key implication true.

So, in order to defeat you at the game, all that your opponent needs to do is throw you one single €
for which you can’t come up with a § that would make the rest of the proof work. For that particular
€ that your opponent uses to defeat you, then, it must be true that for every possible § that you could
have thrown back, the key implication is false.

Note that any implication « = b can be shown to be false exactly when a holds and b doesn’t (for
example, the statement “if you are from Canada, then you are left-handed” is obviously false, and we
can prove that it is false by showing a Canadian who is not left-handed). In particular, for our key
implication above, we can show that it is false by finding some x for which both 0 < |z —a| < §, and
@) —L| > <.

Putting the previous two big ideas together will give you the entire negation as written in the first
paragraph.

(¢) Formulate precise “epsilon-delta” definitions of the one-sided limits (that is, formulate one definition for
the left-hand limit, and one for the right-hand limit).

Solution.  For the left-hand limit, we write lim f(z) = L if given any number € > 0, there exists a
r—a—
number § > 0 such that
ifa—d <z <a, then |f(z) — L| <e.

Similarly, for the right-hand limit, we write lirn+ f(x) = L if given any number ¢ > 0, there exists a
r—a

number § > 0 such that
ifa<xz<a+d, then |f(x)—L| <e.

Notice that the only things here that are different from the definition in the problem statement are in
how we mathematically interpret the first part of the key implication, “if x is within § of a”. For the
case when x could be on either side of a, then we would write a —§ < < a+ § (which can be rewritten
—0 < x —a < §, or most succinctly as 0 < |z — a| < §, which excludes z = a as well). But for the case
when x must be either to the left or to the right of §, respectively, then we would write a —d < z < a
and a < z < a+9.

(d) Formulate a precise “M-delta” definition of the infinite limit lim f(x) = +o00. Your definition should
r—a
involve the inequality f(z) > M.

Solution. We say that hgl f(z) = 400 when, for all M > 0, there exists § > 0 such that

if 0 < |z —a| <9, then f(z) > M.




Problem 2. (a) Prove, using the definition of continuity, that the function f(x) = 6* is continuous everywhere on the real
line.

Solution. It will be sufficient to show that for all @ € R, lim 6% = 6. But we had no handy laws
r—a

for the limits of exponentials, so we need to use the epsilon-delta definition to prove this. I will first

describe the line of reasoning that should have led you to the correct epsilon-delta proof, and then I’ll

give the proof itself.

So, our proof should start off by letting e > 0 be given, and we should find some ¢ such that if |z — a| < 4,
then |6 — 6% < e. Let’s look at the e inequality, to see if we can’t get it into a form that makes the
necessary restriction on J more apparent.

6" — 6% =6 |6"* — 1

, since for all a € R, 6% > 0. Thus,

67 — 6% <& = 6*[6" " —1| <e = |6 —1|< — > —— <6 —1< —.
Now, let’s look at the ¢ inequality; recall that |z — a| < § means that —§ < z — a < 4, and this means:
67°<6""<6 = 60-1<6""-1<6 1.

So, if we can find a § > 0 such that both

s € s €
6°—1< e and 67° > T
then we will have satisfied the € inequality. Let’s look at the positive side first:

3 3
— = < —

60— 1<
6 62

+1 <= 5<1og6(6%+1).

So, we need that § < logg (6% + 1). We also need the negative side; that is:

1= S P _ _ £
6 1> 6‘1(:}6 >1 6“{:) 6>log6(1 6‘1)'
So, we need that 6 < —logg (1 - 6%) The result is that if we define 41 := logg (6% + 1) and
09 1= —logg (1 — 6%), then the € inequality will hold if we let § be smaller than either §; or ds; that is, if
we let § < min{dy, d2}.

That was the outline of the reasoning of the proof. The proof itself follows:

Let € > 0 be given, and let d; := logg (6% + 1) and g := —logg (1 — 6%) Let 6 < min{dy,d2}. Suppose
that 0 < |z —a| < 4. Then we have z — a < 0, and ¢ < ¢; implies
679 —1<6°—1<6" —1= (5 1)—1=i,
6@ * 6e

which implies that 6°7¢ — 1 < &, and multiplying through by 6%, we see that 6 — 6% < e.

But also, we have x — a > —§, and § < 5 implies that —) > —Js, which implies

T—a -4 -5 . g B g
60 —1>67°-1>6 2717(1767)71,767,

which implies that 6°~ — 1 > — &, and multiplying through by 6, we see that 6 — 6% > —e. Thus, we

see that |67 — 6%| < e, and so we have proven that lim 6 = 6°.

Tr—ra
I did not expect each of you to construct this epsilon-delta proof perfectly, but I did expect you to realize
that since we had not learned any limit laws about exponentials, then we needed to construct some kind
of a proof like this. You'll get full credit if you tried this kind of a proof, and didn’t just make something
up or write nonsense.




(b) Prove, using the Intermediate Value Theorem, that there is a positive, real solution of the equation
3 x
r° +3 = 67.

Solution. Fortunately, this is the easier part of this problem, once we establish the continuity of 6.
In order to use the Intermediate Value Theorem, we need a function and a closed interval on which that
function is continuous. For this problem, we should define the function f(z) := 23 +3 — 6%, and we would
like to find some closed interval where f is continuous, where the function values at the endpoints of the
interval have opposite sign (we need this to be true because our goal was to show that for some ¢ inside
the interval, f(c¢) = 0). Our function f is continuous over any interval of real numbers, though: we had
a rule that told us all polynomials were continuous over the entire real line, and z + 3 is a polynomial,
S0 it is continuous on R; we also know from part (a) that 67 is continuous on R, and we also had a rule
that the difference of two continuous functions is also continuous. Thus, f(z) is continuous over all of R.

Now, we find a suitable interval. The easiest way to do this is by testing points; you might luckily
stumble upon the interval [0,1] for your problem, and in this case, f(0) = 02 +3 —6° =3 -1 = 2,
whereas f(1) = 1> +3 — 6! = —2. So, the function values at the endpoints have opposite sign, and we’ve
found a good interval to apply the IVT on.

Now, we put all of that together. Since K = 0 is between f(0) = 2 and f(1) = —2, and because
f(z) = 2® + 3 — 6% was continuous over the closed interval [0,1], we apply the Intermediate Value
Theorem to get the result that there must be some ¢ € (0,1) such that f(c) = 0. Thus, z = ¢ is a solution
of the equation z3 + 3 = 62.

Problem 3. (a) Establish, using the definition of the derivative, that the derivative of f(z) = £ is f'(z) = — %, if cis a
constant.

Solution. The derivative is given by its definition as:

flz+ Ar) — f(z)

Az—0 Ax

|
=

f'(z)

Il
g

. cx—c(z+ Ax)

lim —m8———=
az—0 zAz(z + Ax)

. —cAx

m —
Az—0 zAz(x + Ax)

li —¢

im ——
Az50 22 + xAx’
and we can evaluate the latter limit by substitution to obtain, finally,
—c

f(x)= lim ———— = —%,

= 1 =
Az—0 22 + zAx T

as desired.

(b) The volume V (in liters) of 3 g of CO5 at 27°C is given n terms of its pressure p (in atmospheres) by the

formula
_ 1.68

p
What is the rate of change of V' with respect to p when p = 2 atm?

Vv

Solution. This problem asked for an instantaneous rate of change, at the instant when p = 2 atm.
That is, it asked for the derivative of V' with respect to p, evaluated at p = 2. We compute this using
the result in part (a), taking ¢ = 1.68:

dVv

dav ~ —1.68
dp a

p=2 p

V'(2) =




(c) Plot V(p) and V'(p) on the same graph. Be sure to include all appropriate axis labels, arrows, and scale
markings.

Solution. Please see the plot below, where V(p) is marked in blue, and V’/(p) is marked in red. Note
that V'(p) is always negative, because V (p) is always decreasing, and note that there are no local maxima
or minima or V(p), so V/(p) does not cross the p-axis.
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