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June 2, 2014

Week 2: Solutions to Written Homework Problems

Problem 1. Recall the “epsilon-delta” definition of the limit:

Suppose that f(x) is defined in an open interval containing the point a (except possibly not at a itself).
Then we say that the number L is the limit of f(x) as x approaches a—and we write

lim
x→a

f(x) = L

—provided that the following criterion is satisfied: Given any number ε > 0, there exists a corresponding
number δ > 0 such that

if 0 < |x− a| < δ, then |f(x)− L| < ε.

(a) Use this definition to prove that lim
x→3

3x+ 7 = 16.

Solution. Let ε > 0 be given, and suppose that δ < ε
3 . Then the following chain of logical statements

holds:

0 < |x− 3| < δ =⇒ |x− 3| < ε

3
=⇒ 3 |x− 3| < ε

=⇒ |3x− 9| < ε

=⇒ |(3x+ 7)− 16| < ε

=⇒ |f(x)− 16| < ε.

Notice, in particular, that 0 < |x− 3| < δ implies that |f(x)− 16| < ε, and this is just what we needed.

This is an extremely important exercise to see how to play the “epsilon-delta game”; that is, someone
has given you an ε > 0, and it is your job to come up with some δ > 0 (usually dependent upon ε) that
makes the implication 0 < |x− a| < δ =⇒ |f(x)− L| < ε always true. These proofs always take the
following form:

• Let ε > 0 be given (note that you are not assuming a particular value of ε here, and this is why the
proof works: because you’re conducting the proof for a general, unspecified, arbitrary ε, the result
is that no matter which numerical value of ε > 0 someone were to actually throw at you, you could
come back with a δ that would make the rest of the proof work);

• Suppose that δ =[some expression] or that δ <[some expression] (recall from the notes that as soon
as you find one δ that works, then any other value δ′ such that 0 < δ′ < δ will also work: this is
why it doesn’t matter whether you say δ = or δ <[some expression]);

• Prove that with this choice of δ, the “key implication”

0 < |x− a| < δ =⇒ |f(x)− L| < ε

is true.

For some functions—like this one—this process is not very difficult; for others, these “epsilon-delta”
proofs are more difficult, which is why it is convenient to have a set of rules for evaluating limits.
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(b) How would you negate the epsilon-delta definition of the limit? That is, how would you go about proving
that, for some given f , a, and L, lim

x→a
f(x)6=L, using epsilons and deltas?

Solution. To prove that lim
x→a

f(x) 6=L, it is necessary to find some ε > 0 such that for all δ > 0, there

exists some x such that both 0 < |x− a| < δ, and |f(x)− L| ≥ ε.

To see why this is sufficient to prove that lim
x→a

f(x)6=L, it is important to have fully understood how the

proof “game” in part (a) worked; that is, you showed that whichever ε > 0 your opponent threw at you,
you were able to come back with some δ that would make the key implication true.

So, in order to defeat you at the game, all that your opponent needs to do is throw you one single ε
for which you can’t come up with a δ that would make the rest of the proof work. For that particular
ε that your opponent uses to defeat you, then, it must be true that for every possible δ that you could
have thrown back, the key implication is false.

Note that any implication a =⇒ b can be shown to be false exactly when a holds and b doesn’t (for
example, the statement “if you are from Canada, then you are left-handed” is obviously false, and we
can prove that it is false by showing a Canadian who is not left-handed). In particular, for our key
implication above, we can show that it is false by finding some x for which both 0 < |x− a| < δ, and
|f(x)− L| ≥ ε.

Putting the previous two big ideas together will give you the entire negation as written in the first
paragraph.

(c) Formulate precise “epsilon-delta” definitions of the one-sided limits (that is, formulate one definition for
the left-hand limit, and one for the right-hand limit).

Solution. For the left-hand limit, we write lim
x→a−

f(x) = L if given any number ε > 0, there exists a

number δ > 0 such that
if a− δ < x < a, then |f(x)− L| < ε.

Similarly, for the right-hand limit, we write lim
x→a+

f(x) = L if given any number ε > 0, there exists a

number δ > 0 such that
if a < x < a+ δ, then |f(x)− L| < ε.

Notice that the only things here that are different from the definition in the problem statement are in
how we mathematically interpret the first part of the key implication, “if x is within δ of a”. For the
case when x could be on either side of a, then we would write a− δ < x < a+ δ (which can be rewritten
−δ < x − a < δ, or most succinctly as 0 < |x− a| < δ, which excludes x = a as well). But for the case
when x must be either to the left or to the right of δ, respectively, then we would write a − δ < x < a
and a < x < a+ δ.

(d) Formulate a precise “M -delta” definition of the infinite limit lim
x→a

f(x) = +∞. Your definition should

involve the inequality f(x) > M .

Solution. We say that lim
x→a

f(x) = +∞ when, for all M > 0, there exists δ > 0 such that

if 0 < |x− a| < δ, then f(x) > M.
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Problem 2. (a) Prove, using the definition of continuity, that the function f(x) = 6x is continuous everywhere on the real
line.

Solution. It will be sufficient to show that for all a ∈ R, lim
x→a

6x = 6a. But we had no handy laws

for the limits of exponentials, so we need to use the epsilon-delta definition to prove this. I will first
describe the line of reasoning that should have led you to the correct epsilon-delta proof, and then I’ll
give the proof itself.

So, our proof should start off by letting ε > 0 be given, and we should find some δ such that if |x− a| < δ,
then |6x − 6a| < ε. Let’s look at the ε inequality, to see if we can’t get it into a form that makes the
necessary restriction on δ more apparent.

|6x − 6a| = 6a
∣∣6x−a − 1

∣∣ , since for all a ∈ R, 6a > 0. Thus,

|6x − 6a| < ε ⇐⇒ 6a
∣∣6x−a − 1

∣∣ < ε ⇐⇒
∣∣6x−a − 1

∣∣ < ε

6a
⇐⇒ − ε

6a
< 6x−a − 1 <

ε

6a
.

Now, let’s look at the δ inequality; recall that |x− a| < δ means that −δ < x− a < δ, and this means:

6−δ < 6x−a < 6δ ⇐⇒ 6−δ − 1 < 6x−a − 1 < 6δ − 1.

So, if we can find a δ > 0 such that both

6δ − 1 <
ε

6a
and 6−δ > − ε

6a
,

then we will have satisfied the ε inequality. Let’s look at the positive side first:

6δ − 1 <
ε

6a
⇐⇒ 6δ <

ε

6a
+ 1 ⇐⇒ δ < log6

( ε

6a
+ 1

)
.

So, we need that δ < log6

(
ε

6a + 1
)
. We also need the negative side; that is:

6−δ − 1 > − ε

6a
⇐⇒ 6−δ > 1− ε

6a
⇐⇒ −δ > log6

(
1− ε

6a

)
.

So, we need that δ < − log6

(
1− ε

6a

)
. The result is that if we define δ1 := log6

(
ε

6a + 1
)

and

δ2 := − log6

(
1− ε

6a

)
, then the ε inequality will hold if we let δ be smaller than either δ1 or δ2; that is, if

we let δ < min{δ1, δ2}.

That was the outline of the reasoning of the proof. The proof itself follows:

Let ε > 0 be given, and let δ1 := log6

(
ε

6a + 1
)

and δ2 := − log6

(
1− ε

6a

)
. Let δ < min{δ1, δ2}. Suppose

that 0 < |x− a| < δ. Then we have x− a < δ, and δ < δ1 implies

6x−a − 1 < 6δ − 1 < 6δ1 − 1 =
( ε

6a
+ 1

)
− 1 =

ε

6a
,

which implies that 6x−a − 1 < ε
6a , and multiplying through by 6a, we see that 6x − 6a < ε.

But also, we have x− a > −δ, and δ < δ2 implies that −δ > −δ2, which implies

6x−a − 1 > 6−δ − 1 > 6−δ2 − 1 =
(

1− ε

6a

)
− 1 = − ε

6a
,

which implies that 6x−a − 1 > − ε
6a , and multiplying through by 6a, we see that 6x − 6a > −ε. Thus, we

see that |6x − 6a| < ε, and so we have proven that lim
x→a

6x = 6a.

I did not expect each of you to construct this epsilon-delta proof perfectly, but I did expect you to realize
that since we had not learned any limit laws about exponentials, then we needed to construct some kind
of a proof like this. You’ll get full credit if you tried this kind of a proof, and didn’t just make something
up or write nonsense.
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(b) Prove, using the Intermediate Value Theorem, that there is a positive, real solution of the equation
x3 + 3 = 6x.

Solution. Fortunately, this is the easier part of this problem, once we establish the continuity of 6x.
In order to use the Intermediate Value Theorem, we need a function and a closed interval on which that
function is continuous. For this problem, we should define the function f(x) := x3 +3−6x, and we would
like to find some closed interval where f is continuous, where the function values at the endpoints of the
interval have opposite sign (we need this to be true because our goal was to show that for some c inside
the interval, f(c) = 0). Our function f is continuous over any interval of real numbers, though: we had
a rule that told us all polynomials were continuous over the entire real line, and x3 + 3 is a polynomial,
so it is continuous on R; we also know from part (a) that 6x is continuous on R, and we also had a rule
that the difference of two continuous functions is also continuous. Thus, f(x) is continuous over all of R.

Now, we find a suitable interval. The easiest way to do this is by testing points; you might luckily
stumble upon the interval [0, 1] for your problem, and in this case, f(0) = 03 + 3 − 60 = 3 − 1 = 2,
whereas f(1) = 13 + 3− 61 = −2. So, the function values at the endpoints have opposite sign, and we’ve
found a good interval to apply the IVT on.

Now, we put all of that together. Since K = 0 is between f(0) = 2 and f(1) = −2, and because
f(x) = x3 + 3 − 6x was continuous over the closed interval [0, 1], we apply the Intermediate Value
Theorem to get the result that there must be some c ∈ (0, 1) such that f(c) = 0. Thus, x = c is a solution
of the equation x3 + 3 = 6x.

Problem 3. (a) Establish, using the definition of the derivative, that the derivative of f(x) = c
x is f ′(x) = − c

x2 , if c is a
constant.

Solution. The derivative is given by its definition as:

f ′(x) = lim
∆x→0

f(x+ ∆x)− f(x)

∆x

= lim
∆x→0

c
x+∆x −

c
x

∆x

= lim
∆x→0

cx− c(x+ ∆x)

x∆x(x+ ∆x)

= lim
∆x→0

−c∆x
x∆x(x+ ∆x)

= lim
∆x→0

−c
x2 + x∆x

,

and we can evaluate the latter limit by substitution to obtain, finally,

f ′(x) = lim
∆x→0

−c
x2 + x∆x

= − c

x2
,

as desired.

(b) The volume V (in liters) of 3 g of CO2 at 27◦C is given n terms of its pressure p (in atmospheres) by the
formula

V =
1.68

p
.

What is the rate of change of V with respect to p when p = 2 atm?

Solution. This problem asked for an instantaneous rate of change, at the instant when p = 2 atm.
That is, it asked for the derivative of V with respect to p, evaluated at p = 2. We compute this using
the result in part (a), taking c = 1.68:

V ′(2) =
dV

dp

∣∣∣∣
p=2

=
−1.68

p2

∣∣∣∣
p=2

=
−1.68

4
= 0.42

L

atm
.
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(c) Plot V (p) and V ′(p) on the same graph. Be sure to include all appropriate axis labels, arrows, and scale
markings.

Solution. Please see the plot below, where V (p) is marked in blue, and V ′(p) is marked in red. Note
that V ′(p) is always negative, because V (p) is always decreasing, and note that there are no local maxima
or minima or V (p), so V ′(p) does not cross the p-axis.
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