Calculus IIT

E2 Term, Sections E201 and E296
Instructor: E.M. Kiley

Due July 13, 2015

Week 1: Reading, Practice Problems, and Homework Exercises

Reminder

Your submitted homework solutions should show not only your answers, but should show a clearly reasoned
logical argument, written using complete English sentences, leading to that solution. Each mathematical symbol
that you will encounter stands for one or more English words', and if you elect to use any symbols, you should do
so only in full sentences where you intend to abbreviate words.

If the work that you submit is incomplete or illegible, you will not receive credit for it.

Reading

Please read Sections 4.5 and 8.8 in time for Tuesday’s lecture, and Section 10.1 in time for Thursday’s lecture.
(In-class students, you can always re-watch the lectures online after you finish your reading, if it would benefit you.)
I will not necessarily cover all of this material in class, but you will be responsible for it. Any questions about any
of the material can be addressed in class or office hours, or to me via e-mail (emkiley@upi.edu).

Questions to Guide Your Review

Note: Do not hand these in!

Please find at the end of each chapter, before the chapter problems are given, the “Questions to Guide Your
Review” section. You should read through these items to check your understanding of the chapter, but you are not
required to hand in your answers. If you have questions about these, you will usually be able to find your answer by
re-reading the section, by consulting the hints in the back of the book, or, if you are really stuck, by consulting me.
These are meant to be conceptually important questions for you to check how well you have understood the material
in each section, and if you expect to do well on the midterm and final exams, I suggest studying these in particular.

The relevant questions for this week’s material are:

e Chapter 4, “Questions to Guide Your Review”, p. 291, Problems 17-19
e Chapter 8, “Questions to Guide Your Review”, p. 529, Problems 12 and 13

e Chapter 10, “Questions to Guide Your Review”, p. 647, Problems 1-5

Practice Problems

Note: Do not hand these in!

Here are some practice problems to work on at home. It is extremely important that you are proficient at exercises
such as these; without the basic skills, you will find it difficult to complete your exams in the allotted time.

You will find the answers to the odd-numbered problems in the back of the book. This is useful if you want to
check your work, but please remember that the logical argument, not the final answer, is the most important part of
solving a problem for credit in this class. You should therefore understand how to solve each of these problems. In
particular, you should not be satisfied with merely looking up the solution in the back of the book.

Please discuss any questions with me in class, during my office hours, or send me an e-mail.

e Section 4.5, Problems 1-3; 7-21 odd; 3945 odd; 51-56 odd
e Section 8.8, Problems 1-23 odd; 35-49 odd; 65
e Section 10.1, Problems 1-25 odd; 27-51 odd

1See a list of mathematical symbols and their meanings here: http://en.wikipedia.org/wiki/List_of mathematical symbols
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storming may be done in groups.

1)
correct English.
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V)

Rules for Calculus Assignments:

Each student must compose his or her assignments independently.

Please typeset your solutions using ITEX, or handwrite them neatly and legibly using

Show your work. Explain your answers using full English sentences.

No late assignments will be accepted for credit.

However, brain-

Problem 1. This exercise explores the difference between the limits
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(a) [5 points] Use I'Hépital’s Rule to compute the limit:
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Well, yi(2) =~ it

apply "Hopital’s rule:
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Now, we see that this limit has the “%” form, and so we check whether the functions y; (z) := In (1 + %)
and yo(x) := 1/x satisfy the other two conditions of 'Hopital’s rule.

and

y4(z) = —Z, and both of these exist wherever z # 0 and = # —1. Also in particular, y5(z) # 0, and so




(b) [4 points] On the same axes, graph the functions

flz) == (1 + ;) and g(z) = (1 + ;)m

for x > 0. How does the behavior of g compare with that of f? Use your graph and your knowledge of
lim, o f(z) from part (a) to estimate the value of lim,_,, g(z).

Solution. Your graph should look something like this one, generated by WolframAlpha:

W] 20 40 B0 20 100

We see from the graph that f(z) — e (if our graph of f didn’t show a horizontal asymptote at the value
we found in part (a), then that should have been a reality check!). We also see that the graph of g has a

horizontal asymptote, and it looks to be about a third of the way between e and the x-axis—so g(z) — 1
is a good guess.




(c) [5 points] Check your estimate from part (b) by using "'Hopital’s rule to compute the limit:
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Now, we see that this limit has the form, and so we check whether the functions y; () :

«0»
0
and yo(w) = 1/z satisfy the other two conditions of I'Hopital’'s rule. Well, yj(z) = — 7

all conditions are satisfied, and we may apply I’Hopital’s rule:
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So, indeed, our estimate from part (b) was accurate.

@3 14
y4(z) = —25, and both of these exist wherever z # 0 and = # —1. Also in particular, y(z) # 0




k
Problem 2. [6 points] Compute the limit: lim <1 + %) , where 7 is a real constant.
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Now, we see that this limit has the “§” form, and so we check whether the functions y; (k) :=In (1 + §)
and yo(k) := 1/k satisfy the other two conditions of 'Hopital’s rule. Well, yi(z) = —#H%, and
. k

y4(k) = — 7%, and both of these exist wherever k # 0 and k # —1. Also in particular, y5(k) # 0, and so
all conditions are satisfied, and we may apply ’Hopital’s rule:

, e[ m(1+%)

Jim (14 7)" = e |t =k
_ o (=r/k?) 1/ (1+ 1))
= oxp | lim —1/k2
S
=exp[r] =e¢".

Problem 3. Euler’'s Gamma Function I'(x) uses an integral to extend the factorial function from the nonegative integers to
other real values. The formula is:

[(z) = / t"tetdt, x>0.
0

That is, for each positive x, the number I'(x) is the integral of the function f(t) := t*~le~! with respect to t

over the interval ¢t € [0,00). This definition can be extended to negative noninteger values of = by using the

r 1
formula I'(z) = M, which we will confirm for the nonnegative integers in this exercise.
x

(a) [5 points] Show that I'(1) =

Solution.

0o oo b
1) = / et dt = / e tdt=lim [ e 'dt= lim [—eft]g = lim [—eib +e] =1.
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(b) [4 points] Apply integration by parts to the integral for I'(z + 1) to show that I'(z + 1) = 2T'(z). This
gives the sequence:

r'(2)=1T(1) =1
I'(3) = 2I'(2) = 2
I'(4) =3(3) =6

Solution.
oo 0o b
M(z+1)= / tEt 1=t 4t = / t"e~tdt = lim [ t"e~'dt
0 0 b—oo Jo
Let w :=t*, du:=2t® 1 dt, v:= —e %, and dv := et dt, so that by the integration by parts formula

(Judv=uv— [vdu), we have

I'(z+1) = lim [[—twe_t] Zg - /Ob(—e_t)xt’“'_1 dt]

b—oo

b
= lim l—bwe_b—i—x/ et dt]
b—o0 0

b
= lim [fb%*b] + lim [x/ T let dt] .
0

b—o0 b—o0

Now, we observe that in the limit on the left, the e~ factor grows more quickly than the b* factor,
so it will dominate and the limit should be zero; we could also reason that to the limit of the function
(—b%/e?), which has the form “2” I'Hopital’s rule can be successively applied (indeed, the numerators
are all polynomial functions of b that are infinitely differentiable, and the denominators remain e’ which
is also infinitely differentiable, and which never has derivative zero), and after x many iterations of
I’Hopital’s rule, we end up with the limit limg_, (1/66), which is zero. Therefore,

b
MNz+1)=0+ lim [m/ t* et dt]
0

b—oo

o
:x/ et dt
0

= z['(x).

(c) [1 point] Use the principle of mathematical induction? to show that the above sequence holds for every
nonnegative integer n.

Solution. We have proven that I'(1) = 1 = 0!, and that for all n € N, I'(n 4+ 1) = nI'(n); that is,
I'(n+1) =nl'(n).

Therefore, if for some fixed n € N, we suppose that I'(n) = (n — 1)!, then we may conclude T'(n + 1) =
n(n + 1)! = nl. Therefore, since the base case I'(1) = 0! = 1 holds, we may apply the induction
hypothesis successively to determine that, by the principle of mathematical induction, we for all n € N|
I'(n+1) =nl

20nce you’ve done parts (a) and (b), this is a very easy step; if you have never used the principle of mathematical induction before, then
please look at the first section (the first five lines) of this document: http://www.cs.cornell.edu/courses/cs2800/2014fa/handouts/
toronto_induction.pdf. The document also contains some fun mathematics problems at the end, but these are not relevant for this
course.
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dz is not necessarily equal to lim f(z) dx
c—oo J_ .

Problem 4. This problem is intended to show that / flx)
2z dx

> 2xd
(a) [4 points] Show that /0 gﬂL—i—ai diverges, and conclude that [ )

diverges as well.

Solution.
/°° 2z dx . /b 2z dx
= lim | ———,
0 o T4+1

— = 1
2 +1 b— oo

and if we let v := 22 + 1 and du := 2z dz, we may perform u-substitution to obtain

* 2z dx b b +1 2 2
/ ——— = lim — = lim [Infully © = lim In[b* 4+ 1| —In|1] = lim In(b* + 1) — 400,
o =+ 1 b—oo 1 u b—oo b—oo b—o0

where the absolute value signs were removed in the next-to-last expression because the expression b+ 1 is
always positive. We therefore conclude that both improper integrals in the problem statement diverge.

. . ¢ 2z dx
(b) [3 points] Show that C1;11010 [CF—H =0.

, is an odd function of z, and that the (finite!) interval of

Solution. Notice that the integrand, — n
T
integration, (—c, c), is symmetric about = 0. Therefore, since the integral of an odd function over an

interval symmetric about 0 is 0, we may conclude that
€ 2xd
lim [ S~ = lim 0 =0.
c—oo J_.T +1

o0
(c) [3 points] Using the definitions on Page 505, write a correct expression for / f(z) dz, where f(z) is
— 00
continuous on (—oo,00). Your expression should involve two different limits with two different limiting

variables (do not just copy item 3 from the definition; use items 1 and 2 to expand it).

From Page 505, item 4 states that for a continuous function f(z) and some arbitrary ¢ € R,

/_O;f(a:) dxz/_coof(x) dx+/coof(x) de.

We now simply plug in item 1 and item 2 to expand the first and second terms, respectively, of the sum

Solution.

on the right-hand side:
9] c oo c b

/ fz) da = / flz) da +/ f(z)dz = lim f(z) dx + blim / f(z) da.
—o0 —o0 c a——oo [, —oo [,




Problem 5. [10 points] Use the definition of convergence on Page 574 of the text to prove that lim

sinn

n—oo0 N

|sin(x)| < 1 for all .

= 0. Hint:

Solution.  This problem asked us to use the definition of convergence, which is that a sequence {a,}
converges to L if:

’ Ve > 0, 3N € Nsuch that forn e N,n >N = |a, — L| <e. ‘

Now, before we begin our proof, we start computing; if we seek to prove that % — 0, then we should
fix € > 0 and see what needs to be true of a fixed value of n in order for % — 0| to be less than some
fixed positive e. Well,

sinn |sinn|

1
Sfa
n n

n n

sinn
_0’ _

where the 1/n is taken outside of the absolute value signs because n € N implies that 1/n is always positive,
and where we used [sinn| < 1 from the hint. Now, it is clear that in order to have |% —-0| <¢, we
must have % < g; that is, n > é So we set N := ceil(é), where the “ceil” function maps each number to
the smallest integer that exceeds it. This is the end of our personal scratch work, and we may now start

our proof:

Solution. Fixe >0, let N := ceil(%), and suppose that for some n € N, n > N. Then

1
N

sinn|  [sinn|

<

1
- <
n n

sinn
0’ <e.

n n

So {% — 0| < ¢, and we have proven that % — 0.




Problem 6. Newton’s method, applied to a differentiable function f(z), begins with a starting value 2 and generates from
it a sequence of numbers {x,} that, under favorable circumstances, converges to a zero of f. The recursion
formula for the sequence is

(a)

(b)

11

12

14
15
16
17

18

_ f(@n)
I T )
n
[65 points] Show that the recursion formula for f(z) = 2% — a, for a > 0 constant, can be written as
Tn + o=
Tnit1 = D) =

Solution. Well, if f(z) = 2% — a, then f/(x) = 2z, and so the recursion formula for our sequence
becomes:

f(wn) vp—a 225 —(wn—a) 2z —ai+a _ zita Tt

Tn+1 = Tp — f/(x ) = Tn
n

[5 points] Starting with g = 1 and a = 3, calculate successive terms of the sequence until the display on
your calculator or computer prompt begins to repeat. What number is being approximated? Please refer
to the function f(x) in your answer.

3
Ty + =
Solution. If we take a = 3, then our recursion formula becomes x,, 1 = % I chose to write a

MATLAB program to iterate this sequence:

function Prob6(x_0)

% function Prob6(x_0)

b

% Performs Newton iteration for the function f(x)=x"2-3 using the starting
% value x_0. Stopping condition is when display repeats.

a=3; 7% the given a-value
N=@(x) 0.5*(x+a/x); % the computed recursion formula

x_curr=x_0; % the input x_0 value
x_new=N(x_curr); % we compute x_1
its=1; % we create an iterate counter and set it to 1
fprintf (’x_0 = %17.15g\nx_1 = %17.15g\n’ ,x_curr,x_new); % prints x_0 and x_1
while abs(x_curr-x_new)>le-15 % format(long) in MATLAB displays 15 digits,
% so want difference less than 1le-15
its=its+1; % increment the iterate counter
x_curr=x_new; /% the ’new’ x-value from the last iteration becomes current x-value
x_new=N(x_curr); % we compute the new x-value for this iteration
fprintf (’x_%g = %17.15g\n’,its,x_new); % prints x_n
end

And this code gave the following output when run:

>> format long

>> format compact

>> Prob6(1)

= 1
= 2
= 1.75
1.73214285714286
1.73205081001473
1.73205080756888

g W N - O
]




x_6 = 1.73205080756888

So, it looks like Newton’s method is converging (and it’s converging fast! It took only six iterations to
get 15 accurate decimal places!). We were told in the problem statement that Newton’s method, under
favorable circumstances (which it looks like we’re meeting), converges to a zero of f(x), which for us was
f(z) =2%—a=2?-3= (z+3)(z—3), which has zeros £v/3. Obviously, from our starting point zo = 1,
it looks like Newton’s method is converging to the positive root, so we can say that the recursively defined

sequence g =1, zp,41 = % (Jcn + ni) converges to \/3

To see convergence to the negative root of the function, we just change the starting point:

>> Prob6(-1)

= -1
= -2
= -1.75
= -1.73214285714286
-1.73205081001473
-1.73205080756888
-1.73205080756888

DO W N~ O
|

10




