

Lecture 12: Lesson and Activity Packet

MATH 232: Introduction to Statistics

October 31, 2016

Homework and Announcements

- Homework 13 due in class on Friday (find it posted on Canvas tonight)
- Election Prediction Project
 - Deadline for ASA submission was vesterday
 - Deadline for group report, proof of ASA submission, and individual report is tonight at 11:59 p.m.
- Quiz 6 on Wednesday will cover everything through today
- Exam 2 is one week from Wednesday!
 - It will cover everything we do this week.
 - Monday (one week from today) will be a review day.
- Book Review Project
 - Details to be given after the Election Project, but you should buy or procure (by legal means...) the book of your choice now, from among the following three choices:
 - 1. Moneyball: The Art of Winning an Unfair Game, by Michael Lewis
 - 2. Dataclysm: Love, Sex, Race, and Identity—What Our Online Lives Tell Us about Our Offline Selves, by Christan Rudder
 - 3. How Not to Be Wrong, by Jordan Ellenberg
 - You must make your choice before Monday, and use groups on Canvas to sign up for your desired book

Last time

- Conditional probability
- Independent events
- Multiplication rules

Recap of today

- More independent events and multiplication rules
- Bayes' Theorem (?)

Last time, we had the definition of independent events:

Definition 1 (Independent Events)

If $P(B) \neq 0$ and if P(A|B) = P(A), we say that event A is independent of event B. That is, event A is independent of event B if the probability of A is not affected by the occurrence or non-occurrence of event B.

Group Exercise 1

The probabilities that it will rain or snow in a given city on Christmas Day, on New Year's Day, or on both days, are P(C) := 0.60, P(N) := 0.60, and $P(C \cap N) := 0.42$. Check whether N and C are independent.

$$P(N|C) = \frac{P(N \cap C)}{P(C)} = \frac{P(C \cap N)}{P(C)} = \frac{0.42}{0.6} = 0.7 \neq P(N),$$

So the events are mot independent.

Group Exercise 2

If P(A) = 0.80, P(C) = 0.95, and $P(A \cap C) = 0.76$, are events A and C independent?

$$P(A|C) = \frac{P(A \cap C)}{P(C)} = \frac{0.76}{0.8} = 0.95,$$

$$= P(A), so yes, tigc$$
are independent.

Some interesting Multiplication Rules follow from the definition of the conditional probability of E given F:

 $P(E|F) = \frac{P(E \text{ and } F)}{P(F)}.$

If we multiply both sides of this equation by P(F), we obtain one version of the general multiplication rule:

Theorem 1

General multiplication rule

$$P(E \text{ and } F) = P(F) \cdot P(E|F)$$

But also, the definition of the conditional probability of F given E is:

$$P(F|E) = \frac{P(F \text{ and } E)}{P(E)}.$$

Noticing that for all events A and B, P(A and B) = P(B and A), the conditional probability of F given E becomes

 $P(F|E) = \frac{P(E \text{ and } F)}{P(E)},$

and we can again multiply both sides of the equation by P(E) to obtain another version of the general multiplication rule:

Theorem 2

General multiplication rule

$$P(E \text{ and } F) = P(E) \cdot P(F|E).$$

Both of these rules hold for all events E and F.

Example 1

A jury consists of nine men and three women. If two of the jurors are randomly picked for an interview, what is the probability that they will both be women?

Let A be the event that the first juror is a woman, and B be the event that the second juror is a woman. The probability we seek is P(A and B).

Because we are selecting jurors at random, the probability that the first juror picked will be a woman is P(A) =_____;

If the first juror is already picked and ends up being a woman, then we have 11 jurors left to choose from, two of whom will be women. This means that P(B|A) =______. [Notice: we didn't need to use the formula for conditional probability at this stage of the problem—just our general knowledge of classical probability. This is okay, and in fact, it's what's intended!]

We then use the multiplication rule to compute P(A and B):

$$P(A \text{ and } B) = P(A) \cdot P(B|A) =$$

$$P(A) = \frac{3}{12} = \frac{1}{4} = 0.25 \text{ or } 25^{\circ}/.$$

$$P(B|A) = \frac{3-1}{12-1} = \frac{2}{11}$$

So
$$P(A \text{ and } B) = P(A) \cdot P(B|A) = \frac{1}{4} \cdot \frac{2}{11} = \frac{1 \cdot 2}{2 \cdot 2 \cdot 11} = \frac{1}{2 \cdot 11}$$

If A and B are independent events, then recall that this means P(B|A) = P(B), and P(A|B) = P(A). For two events that are already known to be independent, the general multiplication rule then boils down to:

Theorem 3 (General multiplication rule for independent events)

$$P(A \text{ and } B) = P(A) \cdot P(B|A) = P(A) \cdot P(B).$$

Example 2

What is the probability of getting heads in two flips of a balanced coin?

Since the two events are independent, and the probability of heads is $\frac{1}{2}$ for each flip, the answer is $\frac{1}{2} \cdot 12 = \frac{1}{4}$.

Example 3

Revisiting the snowing-on-Christmas example: The probabilities that it will rain or snow in a given city on Christmas Day, on New Year's Day, or on both days, are P(C) := 0.60, P(N) := 0.60, and $P(C \cap N) := 0.42$. Check whether N and C are independent.

So mo - not indep.

Example 4

If A and B are independent events and P(A) = 0.20 and P(B) = 0.45, find:

- (a) $P(A \text{ and } B) = P(A)P(B) = 0.2 \cdot 0.45 = 0.09$
- (b) P(A|B) = P(A) = 0.2
- (c) P(B|A) = P(B) = 0.45
- (d) $P(A^C \text{ and } B) = P(A^C) P(B) = (1-P(A))P(B) = (1-0.2) 0.45 = 0.8 \cdot 0.45 = 0.86$
- (e) $P(A \text{ and } B^C) = P(A)P(B^C) = P(A)(1-P(B)) = 0.2(1-0.45) = 0.2 \cdot 0.55 = 0.11$
- (f) $P(B^C|A^C) = P(6^C) = 1-0.45 = 0.55$
- (g) $P(A^C \text{ and } B^C) = P(A^C) P(B^C) = (1-P(A^C)(1-P(B^C)) = (1-0.2)(1-0.45) = 0.8 \cdot 0.55 = 0.44$
- (h) P(A or B) = P(A) + P(B) P(A and B) = 0.2 + 0.45 0.09 = 0.65 = 0.56

Group Exercise 3

What is the probability of getting three heads in three flips of a balanced coin?

let B ____ 2nd ____ let C ___ 3nd ____

Then P(A and B and C) = P(A) P(B) P(C), since $A, B, 3 \subset a$ independent $= \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$ $= \frac{1}{2^3} = \frac{1}{8}$

Group Exercise 4

A jury consists of nine men and three women. If three of the jurors are randomly picked for an interview, what is the probability that they will all be women?

let B be the went thit. the 1st two are women.

let A be the event that, the 3rd is a woman.

the By the mult. rule, P(A and B) = P(B) P(A [B);

from example 1 on pg. 5, $P(B) = \frac{1}{22}$.

If we had 12 junors w. 3 women initially, and we remove 2 women from the group, then 10 remain with I woman, so $P(A|B) = \frac{1}{10}$.

3

Therefore, P(A AB)= P(B)P(A|B) = 1/22 10 = 1/220 2 0.005

or 0.5%

Remember the example about $P(\text{dark}|\text{midnight}) \neq P(\text{midnight}|\text{dark})$.

Group Exercise 5

Suppose that C is the vent that a person committed a crime, and E is the event that a particular piece of evidence was found. State in words what P(E|C) and P(C|E) represent. How might this information be misunderstood by the general public?

P(E(c) is the probability that evidence is found, given thit a crime was

P(C|E) — a crime was committed, given the evidence was found. Third lawyers 3 juriors confuse these all the time, leading to wrangful convicins. Although these examples show us that $P(A|B) \neq P(B|A)$, we might be interested in the

Although these examples show us that $P(A|B) \neq P(B|A)$, we might be interested in the question of whether there is some other formula that relates P(A|B) and P(B|A). Recall the two versions of the multiplication rule:

$$P(E \text{ and } F) = P(F) \cdot P(E|F)$$

and

$$P(E \text{ and } F) = P(E) \cdot P(F|E).$$

Notice that these two version of the rule give two different ways of writing the same quantity P(E and F). So we can write:

$$P(F) \cdot P(E|F) = P(E) \cdot P(F|E),$$

which boils down to

Theorem 4 (Bayes' Theorem)

$$P(E|F) = \frac{P(E) \cdot P(F|E)}{P(F)}.$$

Bayer! Thur is a result of Thm. 4 - we'll discuss next time.