Lecture 7:
 Lesson and Activity Packet

MATH 330: Calculus III

September 28, 2016

Announcements and Homework

- Written Homework due in class one week from today
- Canvas Homework due Friday 11:59 p.m.

Recap

- Review of series until now
- Comparison test
- Limit comparison test
- Root test
- Ratio test

Questions on any of this?

If not, then today's lesson will be on alternating series.

In the preceding sections, we studied the root test and the ratio test, which are fundamentally different from the integral test, the comparison test, and the limit comparison test in that they apply even to series with negative terms.

There is a special kind of series whose terms are alternatingly positive and negative.

Definition 1 (Alternating Series)

$A n$ alternating series is an infinite series of the form

$$
\sum_{n=0}^{\infty}(-1)^{n+1} a_{n}=a_{1}-a_{2}+a_{3}-a_{4}+a_{5}-\cdots
$$

where for all $n \in \mathbb{N}, a_{n}>0$.

Example 1

- The alternating harmonic series is $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$.
- The geometric series $\sum_{n=0}^{\infty}\left(-\frac{1}{2}\right)^{n}=1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\cdots$ also alternates.

Let's consider the partial sums of an alternating series in the particular case of an alternating series with $a_{n} \geq a_{n+1}>0$ for all $n \in \mathbb{N}$ and $a_{n} \rightarrow 0$.

Theorem 1 (Alternating Series Test)

If the alternating series $\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}$ has $a_{n}>0$ and satisfies the following two conditions:

- $a_{n} \geq a_{n+1}>0 \quad \forall n \in \mathbb{N}$, and
- $\lim _{n \rightarrow \infty} a_{n}=0$
then the alternating series converges.

Example 2

Both the alternating harmonic series and the geometric series shown above converge, because the non-alternating parts of their terms decrease monotonically to zero.

This should be surprising! Although the harmonic series does not converge (the harmonic series does not converge), the alternating harmonic series does converge! At least there's something right and nice in the universe.

Group Exercise 1 (2 minutes)

Does the alternating series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2 n-1}$ converge?

Group Exercise 2 (5 minutes)

$$
\text { What about } \sum_{n=1}^{\infty} \frac{(-1)^{n+1} n}{2 n-1} \text { ? [Hint: Remember that the Alternating Series Test is not an }
$$ "if-and-only-if"! You'll need to remember some other tools here.]

Definition 2 (Conditional convergence)

If an alternating series $\sum a_{n}$ converges, but $\sum\left|a_{n}\right|$ does not converge, then the series is called conditionally convergent.

Definition 3 (Absolute convergence)
If the series $\sum\left|a_{n}\right|$ converges, then the series $\sum a_{n}$ is called absolutely convergent.

Example 3

The alternating harmonic series converges, but the (non-alternating) harmonic series does not. The alternating harmonic series is therefore conditionally convergent.

Group Exercise 3 (3 minutes)

Does the geometric series $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n}}$ converge absolutely, converge conditionally, or diverge?

Recap of Ways to Determine Series Convergence

- Definition of partial sums and convergence an infinite series:

For the infinite series $\sum_{n=1}^{\infty} a_{n}$, the partial sums are defined by

$$
S_{1}=a_{1} ; \quad S_{2}=a_{1}+a_{2} ; \quad \cdots \quad S_{N}=\sum_{n=1}^{N} a_{n} \quad \cdots,
$$

or equivalently by the recursion relation

$$
S_{1}=a_{1} ; \quad S_{n}=S_{n-1}+a_{n} \text { for } n \geq 2
$$

The series converges if and only if its sequence of partial sums converges, and if there is convergence, then the sum of the series is defined as the limit of the partial sums. It is particularly convenient to use this method for telescoping series.

- Geometric series:

$$
\sum_{n=0}^{\infty} a r^{n} \text { converges to } \frac{a}{1-r} \text { if }|r|<1, \text { and diverges if }|r| \geq 1 .
$$

- p-series:

$$
\sum_{n=1}^{\infty} \frac{1}{n^{p}} \text { converges if } p>1, \text { and diverges if } p \leq 1 .
$$

- Special case: the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$. Does not converge! (Does not converge!)
- Combining series:
- If $\sum a_{n}=A$ and $\sum b_{n}=B$, then $\sum\left(a_{n}+b_{n}\right)=A+B$.
- If $\sum a_{n}=A$ then $\sum\left(k a_{n}\right)=k A$.
- Every nonzero constant multiple of a divergent series diverges too.
- If $\sum a_{n}$ converges and $\sum b_{n}$ diverges, then $\sum\left(a_{n}+b_{n}\right)$ and $\sum\left(a_{n}-b_{n}\right)$ both diverge too.
- If $\sum a_{n}$ and $\sum b_{n}$ both diverge, then we cannot say anything about either $\sum\left(a_{n}+\right.$ $\left.b_{n}\right)$ or $\sum\left(a_{n}-b_{n}\right)$.
- Adding or deleting finitely many terms doesn't affect whether a series converges, just (possibly) its sum.
- Can reindex: $\sum_{n=1}^{\infty} a_{n}=\sum_{n=0}^{\infty} a_{n-1}$, and in general $\sum_{n=j}^{\infty} a_{n}=\sum_{n=j+h}^{\infty} a_{n-h}$.
- $n^{\text {th }}$ term test for divergence

If $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then $\sum_{n=1}^{\infty} a_{n}$ diverges.

- Converse is false! Counterexample is the harmonic series, whose terms approach zero but which diverges anyway.
- Integral test

If $a_{n}=f(n)$ where f is positive, continuous, and decreasing for all $x, n \geq N \in \mathbb{N}$, then $\sum_{n=1}^{\infty} a_{n}$ and $\int_{1}^{\infty} f(x) \mathrm{d} x$ either both converge, or both diverge (sometimes said: "the sum and the integral converge or diverge together").

- Comparison test

Suppose that for all $n>N, a_{n}, b_{n}$ and c_{n} are all positive.

- If $\sum c_{n}$ converges and for all $n>N, b_{n} \leq c_{n}$, then $\sum b_{n}$ converges too.
- If $\sum a_{n}$ diverges and for all $n>N, a_{n} \leq b_{n}$, then $\sum b_{n}$ diverges too.
- Limit comparison test

Suppose $a_{n}>0$ and $b_{n}>0$ for all $n>N$.

1. If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=L>0$, then $\sum a_{n}$ and $\sum b_{n}$ converge or diverge together.
2. If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=0$ and $\sum b_{n}$ converges, then $\sum a_{n}$ converges too.
3. If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\infty$ and $\sum b_{n}$ diverges, then $\sum a_{n}$ diverges too.

- Ratio test

To determine convergence or divergence of the series $\sum a_{n}$, compute $L:=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|$.

1. If $L<1$, then the series converges;
2. If $L>1$, then the series diverges;
3. If $L=1$, then the test is inconclusive.

- Root test

To determine convergence or divergence of the series $\sum a_{n}$, compute $\rho:=\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}$.

1. If $\rho<1$, then the series converges;
2. If $\rho>1$, then the series diverges;
3. If $\rho=1$, then the test is inconclusive.

- Alternating series test

If the alternating series $\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}$ has $a_{n}>0$ and satisfies the following two conditions:
$-a_{n} \geq a_{n+1}>0 \quad \forall n \in \mathbb{N}$, and
$-\lim _{n \rightarrow \infty} a_{n}=0$
then the alternating series converges.

