Lecture 8:
 Lesson and Activity Packet

MATH 330: Calculus III

September 30, 2016

Announcements and Homework

- Written Homework due in class on Wednesday next week
- Canvas Homework due Monday 11:59 p.m.
- Exam 1 next Friday, October 7 (review day on Wednesday)

Recap

- Review of series until now
- Root test
- Ratio test
- Alternating series
- Absolute vs. conditional convergence

Questions on any of this?

If not, then today's lesson will be on power series.

Definition 1 (Power series about $x=a$)

A power series about $x=a$ is a series of the form

$$
\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+\cdots
$$

in which the center a is a constant, and the coefficients c_{0}, c_{1}, \ldots may depend on n.

Notes:

- Often have $a=0: \sum^{i} n f t y_{n=0} c_{n} x^{n}=c_{0}+c_{1} x+c_{2} x^{2}+\cdots$
- Think of these like "infinite polynomials" -we will figure out how to manipulate them (e.g., adding, subtracting, differentiating, integrating) like "finite" polynomials

Example 1

If $a=0$ and all coefficients c_{n} are 1, then the power series is

$$
\sum_{n=0}^{\infty} x^{n}
$$

Group Exercise 1 (5 minutes)

The power series $\sum_{n=0}^{\infty} x^{n}$ is also classifiable as what kind of series? For which values of x does the series converge? What does it converge to in that case?

So we found:

$$
\text { For } x \in(-1,1), \sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x} .
$$

We can equivalently write:

$$
\text { For } x \in(-1,1), \frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n} .
$$

This latter representation might make it more clear that for $x \in(-1,1)$, a polynomial approximation of $\frac{1}{1-x}$ can be obtained by taking partial sums of the power series $\sum_{n=0}^{\infty} x^{n}$:

$$
\begin{aligned}
& P_{0}(x)=1 \\
& P_{1}(x)=1+x \\
& P_{2}(x)=1+x+x^{2} \\
& P_{3}(x)=1+x+x^{2}+x^{3} \\
& \vdots \\
& P_{N}(x)=\sum_{n=0}^{N} x^{n} \\
& \vdots
\end{aligned}
$$

These polynomial approximations get closer to $\frac{1}{1-x}$ as $N \rightarrow \infty$.

Example 2

We know that $\frac{1}{1-\frac{1}{2}}=\frac{1}{1 / 2}=2$. Watch the partial sums of the series $\sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{n}$ get closer and closer to 2:
$\left\{P_{0}\left(\frac{1}{2}\right), P_{1}\left(\frac{1}{2}\right), P_{2}\left(\frac{1}{2}\right), P_{3}\left(\frac{1}{2}\right), \ldots, P_{N}\left(\frac{1}{2}\right), \ldots\right\}=\left\{1, \frac{3}{2}, \frac{7}{4}, \frac{15}{8}, \ldots, \frac{2^{N+1}-1}{2^{N}}, \ldots\right\}$

Group Exercise 2 (5 minutes)

In the definition of the power series, take $a=2$ and $c_{n}=\left(-\frac{1}{2}\right)^{n}$:

$$
\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=\sum_{n=0}^{\infty}\left(-\frac{1}{2}\right)^{n}(x-2)^{n}=\sum_{n=0}^{\infty}\left(-\frac{x-2}{2}\right)^{n}=\sum_{n=0}^{\infty}\left(\frac{2-x}{2}\right)^{n}
$$

For which values of x does this series converge? What does the series converge to, in that case?

Group Exercise 3 (3 minutes)
Give the general form of a polynomial approximation of the function $\frac{2}{x}$, and state where this approximation is valid.

We are often interested in the question: For which values of x does a given power series converge?

In each of the two previous examples/exercises, we saw that the power series centered at a converged for x within a certain radius of a. We'll see that this was no coincidence.

Theorem 1 (Power Series Convergence)

The convergence of $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ is described by one of the following cases:
\boldsymbol{C} |se I. There exists $R>0$ such that the series converges absolutely for $|x-a|<R$ (i.e., converges for $x \in(a-R, a+R)$), but diverges if $|x-a|>R$ (i.e., diverges for $x \notin(a-R, a+R))$. At the endpoints $\{a-R, a+R\}$, the series may or may not converge absolutely; these must be tested individually.

Cas II. The series converges absolutely for all x. In this case, we say $R=\infty$.
Cas III. The series converges only at $x=a$, and diverges elsewhere. In this case, we say $R=0$.

Notes:

- R is called the radius of convergence and the interval where the series converges is called the interval of convergence. The interval of convergence may look like any of the following:

1. $(a-R, a+R)$
2. $(a-R, a+R]$
3. $[a-R, a+R)$
4. $[a-R, a+R]$
5. $(-\infty,+\infty)$
6. $\{a\}$

Group Exercise 4 (8 minutes)

State the radius and interval of convergence for the following power series:

- $\sum_{n=0}^{\infty} x^{n}$
- $\sum_{n=0}^{\infty}\left(\frac{2-x}{2}\right)^{n}$
- $\sum_{n=0}^{\infty} n^{n} x^{n}$ [Hint: Use the ratio test.]
- $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}$

Convergence is important for multiplying power series, and for termwise differentiation and integration.

Theorem 2 (Series multiplication for power series)

If $A(x):=\sum a_{n} x^{n}$ and $B(x):=b_{n} x^{n}$ both converge absolutely for $|x|<R$,
Then for $c_{n}:=\sum_{k=0}^{n} a_{k} b_{n-k}=a_{0} b_{n}+a_{1} b_{n-1}+a_{2} b_{n-2}+\cdots+a_{n-1} b_{1}+a_{n} b_{0}$, the series $\sum_{n=0}^{\infty} c_{n} x^{n}$ converges absolutely to $A(x) B(x)$ for $|x|<R$. That is,

$$
\left(\sum a_{n} x^{n}\right)\left(\sum b_{n} x^{n}\right)=\sum c_{n} x^{n}, \quad|x|<R
$$

Notes:

1. Take $R:=\min \left\{R_{a}, R_{b}\right\}$, where R_{a} and R_{b} are the radii of convergence of $A(x)$ and $B(x)$ respectively.
2. Computing the c_{n} is often tedious!(!!) Can be easier to restrict the computation to the first few terms and use strategic (\cdots)'s.

Theorem 3 (Termwise differentiation of power series)

If $\sum c_{n}(x-a)^{n}$ has a radius of convergence $R>0$, then it defines a function $f(x):=$ $\sum c_{n}(x-a)^{n}$ for x such that $|x-a|<R$, and:

$$
\begin{aligned}
f^{\prime}(x) & =\sum n c_{n}(x-a)^{n-1} \\
f^{\prime \prime}(x) & =\sum n(n-1) c_{n}(x-a)^{n-2} \\
f^{\prime \prime \prime}(x) & =\sum n(n-1)(n-2) c_{n}(x-a)^{n-3}
\end{aligned}
$$

$$
\vdots
$$

Each of the series for the derivatives converges on the same interval, where $|x-a|<R$.

The general idea: if a power series converges, then it can be differentiated termwise on the interval of convergence.

Example 3

$f(x):=\frac{1}{1-x}$

This may not work for series that are not power series!

Example 4
$\sum_{n=1}^{\infty} \frac{\sin (n!x)}{n^{2}}$

Theorem 4 (Termwise integration of power series)

If $\sum c_{n}(x-a)^{n}$ has a radius of convergence $R>0$, then it defines a function $f(x):=$ $\sum c_{n}(x-a)^{n}$ for x such that $|x-a|<R$, and $\int f(x) \mathrm{d} x=\sum c_{n} \frac{(x-a)^{n+1}}{n+1}+C$ on the interval of convergence.

General idea: if a power series converges, then it can be integrated termwise on the interval of convergence.

