
Lecture 8:
Lesson and Activity Packet

MATH 330: Calculus III

September 30, 2016

Announcements and Homework

• Written Homework due in class on Wednesday next week

• Canvas Homework due Monday 11:59 p.m.

• Exam 1 next Friday, October 7 (review day on Wednesday)

Recap

• Review of series until now

• Root test

• Ratio test

• Alternating series

• Absolute vs. conditional convergence

Questions on any of this?

If not, then today’s lesson will be on power series.
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Definition 1 (Power series about x = a)

A power series about x = a is a series of the form

∞∑
n=0

cn(x− a)n = c0 + c1(x− a) + c2(x− a)2 + · · · ,

in which the center a is a constant, and the coefficients c0, c1, . . . may depend on n.

Notes:

• Often have a = 0:
i∑

nftyn=0cnx
n = c0 + c1x + c2x

2 + · · ·

• Think of these like “infinite polynomials” —we will figure out how to manipulate them
(e.g., adding, subtracting, differentiating, integrating) like “finite” polynomials

Example 1

If a = 0 and all coefficients cn are 1, then the power series is

∞∑
n=0

xn.

Group Exercise 1 (5 minutes)

The power series
∑∞

n=0 x
n is also classifiable as what kind of series? For which values of x

does the series converge? What does it converge to in that case?
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So we found:

For x ∈ (−1, 1),
∑∞

n=0 x
n = 1

1−x .

We can equivalently write:

For x ∈ (−1, 1), 1
1−x =

∑∞
n=0 x

n.

This latter representation might make it more clear that for x ∈ (−1, 1), a polynomial
approximation of 1

1−x can be obtained by taking partial sums of the power series
∑∞

n=0 x
n:

P0(x) = 1

P1(x) = 1 + x

P2(x) = 1 + x + x2

P3(x) = 1 + x + x2 + x3

...

PN(x) =
N∑

n=0

xn

...

These polynomial approximations get closer to 1
1−x as N →∞.

Example 2

We know that 1
1− 1

2

= 1
1/2

= 2. Watch the partial sums of the series
∑∞

n=0(
1
2
)n get closer and

closer to 2:{
P0

(
1

2

)
, P1

(
1

2

)
, P2

(
1

2

)
, P3

(
1

2

)
, . . . , PN

(
1

2

)
, . . .

}
=

{
1,

3

2
,
7

4
,
15

8
, . . . ,

2N+1 − 1

2N
, . . .

}
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Group Exercise 2 (5 minutes)

In the definition of the power series, take a = 2 and cn =
(
−1

2

)n
:

∞∑
n=0

cn(x− a)n =
∞∑
n=0

(
−1

2

)n

(x− 2)n =
∞∑
n=0

(
−x− 2

2

)n

=
∞∑
n=0

(
2− x

2

)n

.

For which values of x does this series converge? What does the series converge to, in that
case?

Group Exercise 3 (3 minutes)

Give the general form of a polynomial approximation of the function 2
x
, and state where

this approximation is valid.
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We are often interested in the question: For which values of x does a given power
series converge?

In each of the two previous examples/exercises, we saw that the power series centered at a
converged for x within a certain radius of a. We’ll see that this was no coincidence.

Theorem 1 (Power Series Convergence)

The convergence of
∞∑
n=0

cn(x− a)n is described by one of the following cases:

Case I. There exists R > 0 such that the series converges absolutely for |x− a| < R (i.e.,
converges for x ∈ (a − R, a + R)), but diverges if |x− a| > R (i.e., diverges for
x /∈ (a − R, a + R)). At the endpoints {a − R, a + R}, the series may or may not
converge absolutely; these must be tested individually.

Case II. The series converges absolutely for all x. In this case, we say R =∞.

Case III. The series converges only at x = a, and diverges elsewhere. In this case, we say R = 0.

Notes:

• R is called the radius of convergence and the interval where the series converges is
called the interval of convergence. The interval of convergence may look like any
of the following:

1. (a−R, a + R)

2. (a−R, a + R]

3. [a−R, a + R)

4. [a−R, a + R]

5. (−∞,+∞)

6. {a}
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Group Exercise 4 (8 minutes)

State the radius and interval of convergence for the following power series:

•
∞∑
n=0

xn

•
∞∑
n=0

(
2− x

2

)n

•
∞∑
n=0

nnxn [Hint: Use the ratio test.]

•
∞∑
n=0

(−1)nx2n

(2n)!
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Convergence is important for multiplying power series, and for termwise differentiation and
integration.

Theorem 2 (Series multiplication for power series)

If A(x) :=
∑

anx
n and B(x) := bnx

n both converge absolutely for |x| < R,

Then for cn :=
n∑

k=0

akbn−k = a0bn + a1bn−1 + a2bn−2 + · · ·+ an−1b1 + anb0, the series

∞∑
n=0

cnx
n converges absolutely to A(x)B(x) for |x| < R. That is,

(
∑

anx
n)(
∑

bnx
n) =

∑
cnx

n, |x| < R.

Notes:

1. Take R := min{Ra, Rb}, where Ra and Rb are the radii of convergence of A(x) and
B(x) respectively.

2. Computing the cn is often tedious!(!!) Can be easier to restrict the computation to the
first few terms and use strategic (· · · )’s.
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Theorem 3 (Termwise differentiation of power series)

If
∑

cn(x − a)n has a radius of convergence R > 0, then it defines a function f(x) :=∑
cn(x− a)n for x such that |x− a| < R, and:

f ′(x) =
∑

ncn(x− a)n−1

f ′′(x) =
∑

n(n− 1)cn(x− a)n−2

f ′′′(x) =
∑

n(n− 1)(n− 2)cn(x− a)n−3

...

Each of the series for the derivatives converges on the same interval, where |x− a| < R.

The general idea: if a power series converges, then it can be differentiated termwise on the
interval of convergence.

Example 3

f(x) := 1
1−x
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This may not work for series that are not power series!

Example 4
∞∑
n=1

sin(n!x)

n2

Theorem 4 (Termwise integration of power series)

If
∑

cn(x − a)n has a radius of convergence R > 0, then it defines a function f(x) :=∑
cn(x− a)n for x such that |x− a| < R, and

∫
f(x) dx =

∑
cn

(x−a)n+1

n+1
+C on the interval

of convergence.

General idea: if a power series converges, then it can be integrated termwise on the interval
of convergence.
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