Definition 1 (Power series about = a)
A power series about . = i Is a series of the form
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Questions on any of this?

If not, then today’s lesson will be on power series,




So we found:

_ Forze{~1,1), Y2 a" = 1. _
We can equivalently write:
_ Foaze(-1,1), 1L =32 a" _

This Iatter representation might make it more clear that for # € (—1,1), a polynomial
approximation of w can be obtained by taking partial sums of the power series 377, @™
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These polynomial approximations get closer to ulwln as N — oo,

Example 2
We know that {11 = % = 2. Watch the partial sums of the series Yo ,(3)" get closer and
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We are often interested in the question: For which values of ¢ does a given power
series converge?

Group Exercise 4.(8 minites)
“State the T e

In each of the two previous examples/exercises, we saw that the power series centered at o
converged for x within a certain radius of a. We'll see that this was no coincidence.

Theorem 1 {(Power Sertes Convergence)

o
The convergence of M ca(® — a)" is described by one of the following cases:
n=0

C4se 1. There exists It > 0 such that the series converges absolutely for |[v—af < R (ie,
converges for © € (a — R,a + R)), but diverges if [v — e} > R (ie, diverges for
z ¢ (a— f,a+ R)). At the endpoints {a — R,e+ R}, the series may or may not
converge absolutely; these must be tested individually.

(v | =

Cage II, The series converges absolutely for all x. In this case, we say R = co.

Casg 111, The series converges only at z = g, and diverges elsewhere. In this case, wesay R =10.
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Coavergence is important for multiplying power series, and for termwise differentiation and
integration.

Theorem 2 {Series multiplication for power series)
If A(x) := ¥ apa” and B(z) -= b,a™ both converge absolutely for ¢ < R,
n

Then for c,:= M Quby_i = by + @b,y + aghy_g + - + @y iby Hanby, the series
¥=0

Mn._as converges absolutely to A{x)B(z) for || < B. That is,
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Notes:

1. Take R := min{R,, K:}, where B, and R, are the tadii of convergence of A(x} and
B(x) respectively.

2. Computing the ¢, is often tedious!(!!} Can be easier to restrict the computation to the
first few terms and use strategic {-+ }'s.

{

.ur\m.\ \N\S\ Jﬁa__\

| =% m=0

el adi
iva %% ﬂﬁ?km\»\c@ \%u\ﬂ v & m\_ ; _M .

% & m-_lu

Tm:w all K,

Theorem 3 { Termuwise differentiation of power series)

If Y en(x — a)® has a radius of convergence R > 0, then it defines a function f(z) :=
5 eu(x — o) for @ such that | — ¢ < R, and:

Fa) =Y neufz - o)~
@)=Y nin - Vefe — a)-2
(@) = ¥ nin ~ 1) — 2enler — )

Each of the series for the derivatives converges on the same interval, where |z —a| < .

The general idea: if a power series converges, then it can be differentiated termwise on the
interval of convergence.
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This may not work for scries that are not power series!

Example 4
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Theorvermn 4 (Termuwise integration of power series)

If 3 ca{m — o) has a radins of convergence R > 0, then it defines a function f(w) :=

2 tal{w — @) for x such that | — a| < R, avd [ f(z) dz =T e, ?ﬂw”t +C on the interval
of convergence,

General idea: if a power series converges, then it can be integrated termwise on the interval
of convergence.
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