Lecture 8: Lesson and Activity Packet

MATH 330: Calculus III

September 30, 2016

Announcements and Homework

- Written Homework due in class on Wednesday next week
- Canvas Homework due Monday 11:59 p.m.
- Exam 1 next Friday, October 7 (review day on Wednesday)

Recap

- Review of series until now
- Root test
- Ratio test
- Alternating series
- Absolute vs. conditional convergence

Questions on any of this?

If not, then today's lesson will be on power series.

...

Definition 1 (Power series about x = a)

A power series about x = a is a series of the form

$$\sum_{n=0}^{\infty} c_n(x-a)^n = c_0 + c_1(x-a) + c_2(x-a)^2 + \cdots,$$

in which the center a is a constant, and the coefficients c_0, c_1, \ldots may depend on n.

Notes:

- Often have a = 0: $\sum nfty_{n=0}c_nx^n = c_0 + c_1x + c_2x^2 + \cdots$
- Think of these like "infinite polynomials" —we will figure out how to manipulate them (e.g., adding, subtracting, differentiating, integrating) like "finite" polynomials

Example 1

If a = 0 and all coefficients c_n are 1, then the power series is

$$\sum_{u_2}$$

Group Exercise I (5 minutes)

The power series $\sum_{n=0}^{\infty} x^n$ is also classifiable as what kind of series? For which values of x does the series converge? What does it converge to in that case?

Geometric with
$$a=1$$
, $n=\infty$.
Converges if $|x| \le 1$, i.e., $x \in (-1,1)$.
In that case, conv. to $\frac{a}{1-r_2} = \frac{1}{1-x}$.

So we found:

For
$$x \in (-1, 1)$$
, $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$.

We can equivalently write:

for
$$x \in (-1,1)$$
, $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$.

This latter representation might make it more clear that for $x \in (-1,1)$, a polynomial approximation of $\frac{1}{1-x}$ can be obtained by taking partial sums of the power series $\sum_{n=0}^{\infty} x^n$:

$$P_0(x) = 1$$

$$P_1(x) = 1 + x$$

$$P_2(x) = 1 + x + x^2$$

$$P_3(x) = 1 + x + x^2 + x^3$$

$$\vdots$$

$$P_N(x) = \sum_{n=0}^{N} x^n$$

These polynomial approximations get closer to $\frac{1}{1-x}$ as $N \to \infty$

Example 2
We know that $\frac{1}{1-\frac{1}{2}} = \frac{1}{1/2} = 2$. Watch the partial sums of the series $\sum_{n=0}^{\infty} (\frac{1}{2})^n$ get closer and closer to 2:

$$\left\{P_{0}\left(\frac{1}{2}\right), P_{1}\left(\frac{1}{2}\right), P_{2}\left(\frac{1}{2}\right), P_{3}\left(\frac{1}{2}\right), \dots, P_{N}\left(\frac{1}{2}\right), \dots\right\} = \left\{1, \frac{3}{2}, \frac{7}{4}, \frac{15}{8}, \dots, \frac{2^{N+1}-1}{2^{N}}, \dots\right\}$$

Group Exercise 2 (5 minutes)
In the definition of the power series, take a=2 and $c_n=\left(-\frac{1}{2}\right)^n$

$$\sum_{n=0}^{\infty} c_n (x-a)^n = \sum_{n=0}^{\infty} \left(-\frac{1}{2}\right)^n (x-2)^n = \sum_{n=0}^{\infty} \left(-\frac{x-2}{2}\right)^n = \sum_{n=0}^{\infty} \left(\frac{2-x}{2}\right)^n.$$

For which values of a does this series converge? What does the series converge to, in that case?

Also a geom. Series,
$$a=1$$
 and $8=\frac{2-x}{2}$, Com.

When $|n|<1$, i.e., $\left|\frac{2-x}{2}\right|<1$, i.e., $|2-x|<2$,

I.e., $2-x<2$ and $2-x>-2$

If $n\in\{0,4\}$, $\sum_{n=0}^{\infty}\left(\frac{2-x}{2}\right)^n=\frac{a}{1-n}=\frac{1-2-x}{1-2-x}$. So for $x\in\{0,4\}$.

Group Exercise 3 (9 minutes)

Give the general form of a polynomial approximation of the function $\frac{3}{2}$, and state where this approximation is valid.

series converge? We are often interested in the question: For which values of x does a given power

In each of the two previous examples/exercises, we saw that the power series centered at a converged for x within a certain radius of a. We'll see that this was no coincidence.

Theorem 1 (Power Series Convergence)

The convergence of $\sum c_n(x-a)^n$ is described by one of the following cases

Case I. There exists R > 0 such that the series converges absolutely for |x - a| < R (i.e., converges for $x \in (a - R, a + R)$), but diverges if |x - a| > R (i.e., diverges for $x \notin (a - R, a + R)$). At the endpoints $\{a - R, a + R\}$, the series may or may not converge absolutely; these must be tested individually.

Case II. The series converges absolutely for all x. In this case, we say $R = \infty$

Case III. The series converges only at x = a, and diverges elsewhere. In this case, we say R = 0.

of the following: called the interval of convergence. The interval of convergence may look like any R is called the radius of convergence and the interval where the series converges is

1.
$$(a-R, a+R)$$

2.
$$(a-R, a+R]$$

3.
$$[a-R, a+R)$$

4.
$$[a - R, a + R]$$

5.
$$(-\infty, +\infty)$$

L:=
$$\lim_{m\to\infty} \left| \frac{(-1)}{(-1)^m} \frac{2^m}{n^2} \frac{(2m+2)!}{(2m+2)!} \right| = 0$$
 for all so by ratio test, int. of convergence of this series by $(-\infty, +\infty)$ and $R = \infty$.

Group Exercise 4 (8 minutes)

State the radius and interval of convergence for the following power series:

$$\begin{bmatrix} \bullet & \sum_{n=0}^{\infty} x^n \\ 2 & \sum_{n=0}^{\infty} \left(\frac{2-x}{2} \right)^n \end{bmatrix}$$

$$\mathcal{P} \bullet \sum_{n=0}^{\infty} n^n x^n$$
 [Hint: Use the ratio test.]

$$A \cdot \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$$

However, him
$$(1+\frac{1}{m})^m = \exp\left(\ln\left(\frac{\lim_{n\to\infty}\left(1+\frac{1}{m}\right)^m\right)}{\exp\left(\frac{\lim_{n\to\infty}\left(1+\frac{1}{m}\right)}{1/m}\right)} = \exp\left(\frac{\lim_{n\to\infty}\left(\frac{1}{m}\frac{\ln\left(1+\frac{1}{m}\right)}{1/m}\right)}{\frac{\ln\left(1+\frac{1}{m}\right)}{1/m}}\right)$$

$$\lim_{m \to \infty} \left| (m+1) \pi \left(|+ \pm \rangle^m \right| = \lim_{m \to \infty} \left| \pi (m+1) \right| = \left(+ \infty, \pi \pm 0, \pi \pm 0$$

Convergence is important for multiplying power series, and for termwise differentiation and integration.

Theorem 2 (Series multiplication for power series)

If $A(x) := \sum a_n x^n$ and $B(x) := b_n x^n$ both converge absolutely for |x| < R,

Then for
$$c_n := \sum_{k=0} a_k b_{n-k} = a_0 b_n + a_1 b_{n-1} + a_2 b_{n-2} + \dots + a_{n-1} b_1 + a_n b_0$$
, the s

 $\sum_{n=0}^{\infty} C_n x^n$ converges absolutely to A(x)B(x) for |x| < R. That is,

$$\left(\sum a_n x^n\right)\left(\sum b_n x^n\right) = \sum c_n x^n, \quad |x| < R.$$

- 1. Take $R := \min\{R_a, R_b\}$, where R_a and R_b are the radii of convergence of A(x) and B(x) respectively.
- Computing the c_n is often tediousl(II) Can be easier to restrict the computation to the first few terms and use strategic (\cdots) 's.

Example. We know
$$\frac{1}{1-x} = \frac{8}{2} x^m$$
 for $x \in (-1,1)$ and if we are told that $e^x = \frac{8}{2} \frac{2^m}{m!}$ for all x ,

$$\frac{e^{x}}{1-x} = \left(1+x+x^{2}+$$

$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1}$

which is valid for x e (-1,1)

Theorem 3 (Termwise differentiation of power series)

If $\sum_{C_n}(x-a)^n$ has a radius of convergence R>0, then it defines a function $f(x):=\sum_{C_n}(x-a)^n$ for x such that |x-a|< R, and:

$$f'(x) = \sum nc_n(x-a)^{n-1}$$

$$f''(x) = \sum n(n-1)c_n(x-a)^{n-2}$$

$$f''(x) = \sum n(n-1)(n-2)c_n(x-a)^{n-3}$$

Each of the series for the derivatives converges on the same interval, where |x-a| < R.

The general idea: if a power series converges, then it can be differentiated termwise on the interval of convergence.

= $\left(1+x+x^2+x^2...\right)\left(1+x+\frac{x^2}{x^2}+\frac{x^2}{3!}+\frac{x^$ $f(x):=\frac{1}{1-x}$. We know that on (-1,1), Example 3 1-x = 2 x . By our theorem, then, fle) is diffible on (-1,1) and its P"(x) = = m(m-1) 2c , etc. f ((x) = 8 m m -1 1+5 2 nd durily 15

This may not work for scries that are not power series!

But	<u> </u>	. <u>\</u> 8	Exa
	a,	$\sum_{n=1}^{\infty} \frac{\sin(n!x)}{n^2}$	Example 4
<u> </u>	۶	Z-	e 4
m.i.c	both	20	
m2 50	6	tern	
12/2	mica	γ.	
7	de -	tric	
ils	2.3	Ē	
micos(min) fails the min term test, as	and both converge- so it converges.	has terms strictly blum, in and in	
1 28 F	COM		
*	2 2 2 3	31-	
W Y	0,	pund	
125		32 -	
t, a		_	
1 ~	14044356.065040.ii Filo	e.combromarciate	nassassasi Sarxassas

notes me ostal so it diverges.

Theorem 4 (Termwise integration of power series)

If $\sum c_n(x-a)^n$ has a radius of convergence R>0, then it defines a function $f(x):=\sum c_n(x-a)^n$ for x such that |x-a|< R, and $\int f(x) dx = \sum c_n \frac{(x-a)^{n+1}}{n+1} + C$ on the interval of convergence.

General idea: if a power series converges, then it can be integrated termwise on the interval of convergence.

Example.
$$\frac{1}{1-x} = \frac{1}{1-x} = \frac{1-x} = \frac{1}{1-x} = \frac{1}{1-x} = \frac{1}{1-x} = \frac{1}{1-x} = \frac{1}{1-x}$$

we know a p.s. expansion of -lu(+x) on (-1,1) is

 $\sum_{N=0}^{\infty} \frac{N}{N} \frac{1}{N+1}$

	·	