Lecture 9:
 Lesson and Activity Packet

MATH 330: Calculus III

October 3, 2016

Announcements and Homework

- Written Homework due in class on Wednesday
- Canvas Homework due tonight 11:59 p.m.
- Exam 1 now Wednesday, October 12 (review on Friday this week)

Recap from last time

- Power series
- Radius and interval of convergence
- Multiplying power series
- Differentiating power series
- Integrating power series

Questions on any of this?

If not, then today's lesson will be on Taylor series, one particularly important kind of power series.

Recall that if a function $f(x)$ can be expressed as a power series centered at $x=a$ that has radius R of convergence, then $f(x)$ is infinitely differentiable, and the finite sum

$$
P_{N}(x):=\sum_{n=0}^{N} c_{n}(x-a)^{n}
$$

is a polynomial that approximates $f(x)$ more and more closely as $N \rightarrow \infty$.

Now, for something much stronger:

Theorem 1

Every function $f(x)$ that is infinitely differentiable at $x=a$ can be written as a power series (with a nonzero radius of convergence).

Definition 1 (Taylor series generated by f at $x=a$)

Let $f(x)$ be infinitely differentiable in some neighborhood of $x=a$ (that is, in some open interval $(a-R, a+R)$). Then the Taylor series generated by f at $x=a$ is:

$$
\begin{aligned}
f(x) & =\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n} \\
& =f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\frac{f^{(4)}(a)}{4!}(x-a)^{4}+\cdots .
\end{aligned}
$$

If $a=0$, we refer to the series as the Maclaurin series generated by f.

Example 1
Find the Taylor series generated by $f(x)=\frac{1}{x}$ at $a=2$. Where (if anywhere) does it converge to $1 / x$?

Definition 2 (Taylor polynomials)

A Taylor polynomial of order N is (usually) the $N^{\text {th }}$ partial sum of the Taylor series:

$$
P_{N}(x):=\sum_{n=0}^{N} \frac{f^{(n)}(a)}{n!}(x-a)^{n}=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}+\cdots+\frac{f^{(N)}(a)}{N!}(x-a)^{N} .
$$

Example 2

Find the Taylor series and the fourth-order Taylor polynomial generated by $f(x)=e^{x}$ at $x=0$. [This is the same question as "Find the Maclaurin series generated by $f(x)=e^{x}$, and the fourth-order Taylor polynomial approximation of f about $x=0$.]

Group Exercise 1 (10 minutes)

Show that the Maclaurin series generated by $\cos (x)$ is $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}$. Where does this series converge to f ?

On the previous page, we showed that $f(x)=\cos (x)$ has the following derivatives, with their evaluations at $x=0$:

$$
\begin{aligned}
f(x)=\cos (x) & f(0)=1 \\
f^{\prime}(x)=-\sin (x) & f^{\prime}(0)=0 \\
f^{\prime \prime}(x)=-\cos (x) & f^{\prime \prime}(0)=-1 \\
f^{\prime \prime \prime}(x)=\sin (x) & f^{\prime \prime \prime}(0)=0 \\
f^{(4)}(x)=\cos (x) & f^{(4)}(0)=1
\end{aligned}
$$

The polynomial approximations are therefore:

$$
\left.\left.\begin{array}{l}
P_{0}(x)=1 \\
P_{1}(x)=1+0=1 \\
P_{2}(x)=1-\frac{x^{2}}{2} \\
P_{3}(x)=1-\frac{x^{2}}{2}+0=1-\frac{x^{2}}{2} \\
P_{4}(x)=1-\frac{x^{2}}{2}+\frac{x^{4}}{4!} \\
P_{5}(x)
\end{array}\right)=1-\frac{x^{2}}{2}+\frac{x^{4}}{4!}+0=1-\frac{x^{2}}{2}+\frac{x^{4}}{4!}\right)
$$

Notice that the $N^{\text {th }}$ order (not "degree"!) Taylor polynomial approximation of $\cos (x)$ is not the same as the $N^{\text {th }}$ partial sum of the Maclaurin series $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}$, because in this representation, the series "skips" the odd-numbered terms whose value is zero. Be careful!

Group Exercise 2

Find the Taylor polynomials of order 1, 2, and 3 for $f(x):=\sin (x)$ about $x=0$.

Group Exercise 3
Find the Taylor series generated by $f(x):=\frac{1}{x^{2}}$ about $x=1$.

